
Encrypting Java Archives and its Application to Mobile
Agent Security

Volker Roth1 and Vania Conan2

1 Fraunhofer Institut für Graphische Datenverarbeitung
Rundeturmstraße 6, 64283 Darmstadt, Germany

vroth@igd.fhg.de
2 Thomson-CSF Communications

66, Rue du Fossé Blanc
BP82, 92231 Gennevilliers Cedex, France

Vania.Conan@tcc.thomson-csf.com

Abstract. In this article we describe an extension of Java Archives that allows
to keep data encrypted for multiple recipients. Encrypted data is accessible only
by selected access groups. Java archives may be used as containers of mobile
agents, which allows agents to keep confidential data unaccessible while resid-
ing on untrusted hosts. However, additional protective measures are required in
order to prevent Cut & Paste attacks on mobile agents by malicious hosts. One
such mechanism is described. The usefulness of the concepts is illustrated by
an example application for user profile management in an electronic commerce
setting.

Keywords: mobile agent security, Java Archives, encryption, malicious hosts

1 Motivation

Mobile agents [22] push the flexibility of distributed systems to their limits since
not only computations are distributed dynamically, the code that performs them
is also distributed. A number of mobile agent systems are in existence at present;
basic information on about 60 such systems was collected1 in the run-up to the
ASA/MA’99 Conference that took place at the beginning of October in Palm
Springs, FL, USA.

Adequate security has been identified numerous times by different researches as
a top criterion for the acceptance of mobile agent technology. Despite advances
in conceptual mobile agent security issues [19, 20], few agent systems actually
seem to offer security mechanisms beyond transport layer security. In mobile
agent systems,

1 See URL <http://www.informatik.uni-stuttgart.de/ ipvr/ vs/ projekte/ mole/ mal/ mal.html >

1. agents must be protected against malicious hosts,
2. hosts must be protected against malicious agents,
3. agents must be protected against other agents,
4. both agents and hosts must be protected against the rest of the world.

The problem of malicious hosts is generally agreed to be the most challenging
one of those noted above. A number of protection schemes have been devised
to protect certain aspects of mobile agents against malicious hosts, yet most
of them are very restricted or fail to be applicable in a general setting. In this
article we describe another mechanism falling into the category “restricted but
applicable”.

Our philosophy is that good servers should help good agents to protect them-
selves against bad servers. In particular, mobile agent servers should offer some
transparent security services to agents. This also has the advantage that bad
servers can not make agents “forget” to take care of their security on their sub-
sequent hops.

Once a mobile agent leaves the trusted haven of its owner’s computer and hops
off to another host, it is more or less on its own (unless it co-operates with other
agents in protecting mutual security objectives [12]) and at the mercy of its
hosting server. Even though an agent may compute certain functions in privacy
while being on an untrusted host [16], the general rule holds: If data needs to be
confidential then it must be encrypted and the encryption key must be unavail-
able even to the agent itself. Decryption, and hence disclosure of the encryption
key, may be delayed until the very last moment [10] but ultimately the host may
learn it when the data is being used.

However, if data of an agent need only be accessed on particular hosts then it
may be encrypted in such a way that it is unavailable to other hosts when the
agent passes by them. Contemporary agent systems occasionally advertise en-
cryption of agents as a security feature but in general this means encryption of
agents that are in transit between host systems (for instance using SSL). While
this is the state-of-the-art protection mechanism against network-based eaves-
droppers this does not prevent individual hosts from spying on agents at all. We
are aware of only one mobile agent system which supports partial encryption of
agent data for particular recipient servers. This agent system is called Ajanta [7,
8].

Ajanta provides a number of mechanisms which are comparable to the ones we
describe in this article. Agents can have a read-only state which is protected by
means of digital signatures. A targeted state is used to reveal parts of the agent’s

state to selected recipients. However, Ajanta appears to be vulnerable to cut &
paste attacks on the targeted state. This type of attack is described in Section 3.

In this article, we describe an addition to the Java Archive (JAR) Format that
supports transparent selective encryption of archive contents for multiple recip-
ients (Section 2). In Section 3, we describe the use of such JARs as containers
for mobile agents (initial work on this subject is described in [13]), and show
how cut & paste attacks on encrypted contents can be prevented.

2 Java Archive Extensions

The Java Archive (JAR) Format [17] devised by Sun Microsystems builds on the
popular ZIP archive format. It supports multiple signatures and multiple signers
on subsets of a JAR’s contents. Multiple signatures are computed and verified
efficiently through a two-stage process that avoids re-hashing of JAR contents
for each signature. JARs are frequently used to distribute Java class packages,
Applets and Java Beans. The original JAR Format devised by Sun does not pro-
vide mechanisms for encrypting parts of the archive; only digital signatures are
covered. In this section we describe an extension to the Java Archive Structure
that allows to keep partial archive data encrypted for multiple recipients.

The extension consists of an additional meta–folder with the name SEAL-INF.
This folder stores the additional files required for:

– meta-information for the management of encryption and decryption (one
file with the name INSTALL.MF).

– encrypted archives, identified by the extension EAR.
– data structures containing the encrypted data encrypted keys, identified by

the extension P7.

The encryption mechanism used for encrypting EARs is a hybrid one. An en-
cryption key is chosen randomly for a suitable symmetric bulk encryption cipher
such as DESede/CBC/PKCS5Padding [4, 5, 15]. This key is used to encrypt
the compressed plain text. For each recipient, this bulk encryption key (BEK)
is encrypted in the recipient’s public key using an asymmetric cipher such as
RSA [11]. This process is also called sealing, hence the name SEAL-INF for
the meta-information folder. The sealing information and EARs are not located
in the META-INF folder such that this information may itself be signed through
the ordinary signing process defined in the JAR format. This is crucial for the
application of Java Archives as containers of mobile agents as described in Sec-
tion 3.

We chose PKCS#7 [14] as the standard for representing the encrypted BEK and
recipient information. This blends well with the Java Archive Format, which
mandates the use of PKCS#7 for DSA and MD5/RSA signatures. In choosing
PKCS#7, we implicitly adopted X.509 [6] as the certificate format, which is the
de-facto standard for the representation of certificates in the World Wide Web.

On creating a JAR, the user defines access groups, and assigns a name to each
group. Each access group G with name nameG consists of a set of valid re-
cipients r1, . . . , rn and a randomly generated symmetric BEK kG. Recipients
are represented by their valid public key certificates. For each access group G,
a PKCS#7 EnvelopedData structure is created, wrapped into a PKCS#7 Con-
tentInfo, and stored in folder SEAL-INF under the name nameG.P7. This file
contains a RecipientInfo for each intended recipient, holding kG encrypted in
the recipient’s public key.

The user then may assign folders in the JAR to access groups. Each folder may
be assigned to at most one such group. For each folder V that is assigned to
an access group G, a corresponding entry is stored in the INSTALL.MF file,
which is stored in the SEAL-INF folder of the JAR. This file is similar to MAN-
IFEST.MF files in that it contains sections of name/value pairs formatted like
header fields in RFC822 [2] messages. Each section is separated from its suc-
cessor by an empty line. Each section contains the entries described below, quo-
tation marks denote literal strings:

Name Value
“Name” V

“EAR” nameV

“Group” nameG

The unique EAR name nameV is generated by the sealing software. The en-
cryption process takes each folder V that is assigned to an access group G, com-
presses its contents recursively into a ZIP archive, and encrypts it with kG. The
resulting file is stored in the SEAL-INF folder under the name nameV .EAR.
The plain text folder V is then deleted.

The decryption process first tries to recover as many bulk encryption keys as
possible by verifying the RecipientInfos in the P7 files against the public key
certificates corresponding to the available private decryption keys. Each Re-
cipientInfo contains the unique issuer name and serial number of the certifi-
cate [6] that was used to create that entry. This establishes the groups to which
the processing entity belongs. For each folder that is assigned to such groups,
the corresponding EAR is decrypted with the recovered BEK, and its contents
are decompressed to folder V .

META-INF/ MANIFEST.MF
alias.SF
alias.(DSA|RSA|PGP)

SEAL-INF/ INSTALL.MF
nameV .EAR
nameG.P7

static/ agent.properties
mutable/ instance.ser

classes

Table 1. The extended structure of a JAR used as a container for mobile agents

3 Encrypted JARs and Mobile Agents

A number of agent systems represent agents simply as a stream of serialised
objects that encapsulate virtually all the information in the agent, including any
data the agent may have collected on previous hops. Classes are either down-
loaded on demand or the serialised stream is annotated with the byte code. Of-
ten, RMI is used as means of transporting the agent from one hop to the next.
While this bears advantages such as simplicity and elegance, it puts strains on
security mechanisms. Since data and object state is cluttered throughout the se-
rialised stream and many alternative orderings exist for a serialised object graph,
it is hard to apply e.g. digital signatures to portions of an agent’s data transpar-
ently for an agent.

Moreover, it is complicated to infer any information from the agent’s representa-
tion before the agent is actually deserialised. This is unfortunate because during
deserialisation the agent’s classes are installed and the agent may seize control
over the deserialisation thread by implementing the readObject and writeOb-
ject methods described in the documentation of class ObjectInputStream.

On the other hand, the JAR Format already offers well-defined processes for
the signing and signature verification of archive contents. An agent’s JAR may
be loaded in its entirety and verified and/or processed in a number of ways
transparent to the agent even before the agent is run. The basic layout that we
use for such JARs is shown in Table 1. Once an agent is admitted to the system,
its JAR is decompressed and installed in a file system folder that is reserved for
that particular agent. The location of this folder is passed to the mobile agent.
The Agent is granted access to this folder and can use it as storage space for data
that it acquires. We encourage agent programmers to use this feature because
this reduces the amount of data that is occupied by agents in the memory of the

server’s VM. Moreover, it is persistent storage that is not lost in case of a server
crash. On migration, the agent’s folder is compressed into a JAR again.

However, the mechanisms described in Section 2 do not yet suffice to assure the
protection of the encrypted data. Malicious hosts and other attackers that get a
copy of the agent JAR may launch a cut & paste attack. The following example
illustrates the attack:

1. Alice prepares a search agent. The agent collects stock quotes from Bob’s
server and the server of Mallet, but Alice does not want Mallet to know
which quotes her agent collected from Bob. So she creates an access group
G with Bob as its sole recipient and assigns the folder secret to this group.
The agent is programmed to store the quotes in that folder if it is at Bob’s
server.

2. Alice sends her agent to Bob. Bob decrypts and installs the folder secret
because he is a legal recipient. The agent collects the stock quotes and sets
its next hop to the server of Mallet. Bob re-encrypts the folder and sends the
agent to Mallet.

3. Mallet copies the INSTALL.MF, nameG.P7 and nameV .EAR files from
the agent to an agent of its own and sends it to Bob.

4. Bob decrypts and installs the folder secret in Mallet’s agent because he is
a valid recipient. The agent then copies the plain text data to another folder
and sets its next hop to Mallet. Bob re-encrypts folder secret and sends the
agent back to Mallet.

5. Mallet reads the plain text returned by his agent.

The attack is successful because the encrypted archives are not linked to the
agent instance and Alice. Signing the encrypted archive is of no help since the
signature may simply be stripped away by Mallet. One way to forge such a link
is to request a non-interactive proof of knowledge of kG from the entity that
claims to be the rightful owner of the agent. In addition to this, the agent must
have a unique static kernel that can be signed by its owner as proof of ownership
and authorisation. The information in the kernel must be sufficient in order to
assure that the agent can be bootstrapped securely, e. g. by starting only a class
that the agent’s owner trusts to keep confidential information in the appropriate
folders. Below, we describe an approach to create a safe link.

Let certA be the certificate of the signing key of Alice. Let MAC be a suit-
able Message Authentication Code (see [9], Section 9.5). Alice adds one addi-
tional section with the reserved name “GROUPS” to the INSTALL.MF file of
the agent. For each defined access group Gi she puts an entry into this section
as shown below; quotation marks denote literal strings:

Name Value
“Name” “GROUPS”
nameG1

MAC(kG1
, certA)

nameG2
MAC(kG2

, certA)
. . .

Alice signs the static parts of her agent including the agent properties, the file
INSTALL.MF, and the agent’s classes with her secret signing key. The proper-
ties contain the agent’s unique name, the name of its main class, and any other
properties Alice wants to define in a way that cannot be tampered with without
breaking the signature and hence Alice’s assertion of ownership of her agent.
Bob verifies the validity of access groups in Alice’s agent as described in Algo-
rithm 1.

Algorithm 1 The algorithm for verifying access group validity.
1: { Let certB be the certificate of Bob’s decryption key. }
2: { Let certA be the certificate of Alice’s signing key. }
3: for all nameG do
4: Bob loads the EnvelopedData structure SEAL-INF/nameG.P7;
5: if it contains a RecipientInfo matching certB then
6: Bob recovers kG with the private key corresponding to certB ;
7: Bob computes MAC(kG, certA);
8: Bob compares the result with the value of attribute nameG in section GROUPS;
9: if both are equal then

10: accept G;
11: else
12: reject G;
13: end if
14: end if
15: end for

Subsequent to this test, Bob iterates through the sections in file INSTALL.MF;
for each folder V that is assigned to an accepted access group G Bob decrypts
the appropriate nameV .EAR and installs it in folder V of the agent.

4 Security

The technical security of the encrypted data in the agent is based on the secu-
rity of the weakest link in the chain of cryptographic primitives consisting of
a symmetric cipher, the signature scheme, the weakest asymmetric encryption
used within a RecipientInfo, and the MAC algorithm.

The MAC is crucial for the prevention of cut & paste attacks. In order to launch
a successful attack, Mallet has the following choices. He may:

– Convince Bob that he produced the EAR by forging a MAC with his own
certificate as the input and without knowing kG (otherwise Mallet may sim-
ply decrypt the cipher text).

– Impersonate Alice, which requires forging Alice’s signature on the kernel
of an agent of his own.

– Modify the state of Alice’s agent such that it leaks the plain text data. Copy-
ing the P7 and EAR files to a different agent of Alice won’t work because
the INSTALL.MF file is covered by Alice’s signature.

Even if Mallet convinces a certificate authority Bob trusts to issue a certificate
with Alice’s identity and Mallet’s public key, this will be detected by Bob, be-
cause the MAC is computed by Alice on her original certificate, which includes
her public key and which is used to verify her signature on her agent’s kernel.

Mallet cannot substitute a class of his own as the principal agent class because
the class and its name is covered by Alice’s signature. However, he may modify
the serialised instances of Alice’s agent such that a Trojan horse class is called
by it, which leaks the plain text data. Therefore, it is of utmost importance that
access to the agent’s folder is granted only to classes that are authorised by
Alice, using the Java 2 AccessController mechanisms and the digests stored in
the Manifest file of the JAR.

5 Transparent Implementation

We integrated a reference implementation of the mechanisms described in Sec-
tions 2 and 3 into our experimental mobile agent server SeMoA. Transport of
agents in SeMoA is handled by two principal services: the so-called ingate and
outgate. Both make use of other services that may be registered in the server
dynamically and at boot time. Services are grouped according to functionality
and level of confidentiality on a number of configurable service levels. On such
level is the transport level on which services are registered that have to do with
transporting agents. A second level is the security level on which services are
registered that provide security services. The ingate and outgate scan the secu-
rity level for particular classes of services implementing filters for incoming and
outgoing agents. They arrange such filters in a pipeline that must be passed by
each agent before it is admitted to the server and before it is sent to its next hop.
This is illustrated in Figure 1.

InGate
 OutGate
 raw
 smtp

Encrypt.6
 Sign.7
Veriy.1
 Decrypt.2

KeyMaster

transport

security

god

Fig. 1. An excerpt of the service levels in the experimental SeMoA server.

We implemented four security filters, two for incoming agents and two for out-
going agents:

Verify filter: This filter expects and verifies two signatures per agent. The first
signature covers the static part of the agent, the signer is assumed to be its
owner. The second signature covers the entire agent, the signer is assumed
to be the last sender of the agent. The valid certificate chain of the signer’s
certificate must end in a trusted CA certificate.

Decrypt filter: This filter implements the decryption mechanisms described in
Sections 2 and 3, including the verification of the access groups as set forth
in Algorithm 1.

Encrypt filter: This filter re-encrypts the agent’s contents according to the
scheme described in Sections 2 and 3, and deletes the plain text folders.

Sign filter: This filter binds the new execution state of the agent to its kernel
by signing the complete agent with the server’s secret signing key.

Each server has two key pairs, one for signing and another one for encryption
and decryption. The agent passes the incoming filter pipeline before it is started.
On execution of the agent, the accessible data is already installed in the agent’s
folder. Apart from setting up the access groups and assigning the appropriate
folders, the agent creator is not bothered with the encryption and decryption
anymore. This is handled transparently by the server on behalf of the agent.

6 Application Example: Profile Protection

Privacy protection is an important feature for agent applications [1]. Mobile
agents which carry personal information are able to carry out personalised tasks
on their owner’s behalf. The richer the profile information, the more person-
alised the agent’s response. Securing the profile data is thus a means to insure
privacy protection.

Privacy protection is guaranteed in the European Union by national laws, and
national data protection organisations. All national regulations implement the
same European privacy protection principles, as expressed in EU directive
95/46 [3], which is a legally binding document since October 1998. The direc-
tive proposes a formal framework for privacy protection, which is not available
for instance in the USA. The directive considers personal data as information on
which the data subject has a number of rights such as right of access to the data,
opt out opportunity and protection on international data flow. A detailed list is
given in the directive.

For instance if a netizen (the data subject) provides his name and address (per-
sonal data) to the web site of a software vendor (the data controller), he au-
tomatically reserves said rights on this data, and the data controller implicitly
agrees to adhere to these rights. In addition, the data controller has a number of
obligations. Only legitimate data may be collected and the collected data must
be adequate to the purpose for which it is collected.

Apart from legal issues involved in processing personal data, technical means
must be provided to facilitate the management and control of such data in par-
ticular for the data subject. The W3C put forward a proposal named Platform
for Privacy Preferences [21] (P3P) that aims at providing a protocol for reach-
ing agreements between a Web user and a Web site on the exchange and use of
personal data. P3P is reaching its final state in early 2000. Prototypes of P3P
compliant servers and client applications are available, and are now ready for a
widespread dissemination of the standard.

P3P consists of a negotiation and data exchange phase. The protocol is designed
for a client server system. At first sight, mobile agents may not profit from a
standard such as P3P since negotiating personal information while being dis-
connected from a trusted computing base is extremely risky in the face of a
potentially malicious host.

However mobile agents can benefit from the on-line P3P negotiation phase. The
agreement reached by the two parties, the data subject (netizen) and the data
controller (retailer), is valid on a number of profile elements over a given period

of time. An agreement id is stored on the netizen’s side with the correspond-
ing time stamp. Agreements with regular retailers may last up to six months or
one year. Mobile agents can then carry the relevant agreement id and the corre-
sponding profile elements using selective encryption as presented above. Only
the authorised retailers will thus be allowed access to the information.

We are implementing this scheme for personalised product brokering mobile
agents. Upon visiting the retailer’s sites, answers to mobile agents are person-
alised, taking into account both the specific request and profile information.

7 Conclusions

In this article, we presented an extension of the JAR format that allows to en-
crypt contents in a JAR for multiple recipients, and its application to mobile
agents. Using extended JARs as containers for mobile agents requires addi-
tional security precautions in order to detect and prevent cut & paste attacks
on the encrypted contents. We presented an approach to solving this problem.
In conjunction with the signing scheme we devised, we are now able to support
a number of access rights to portions of an agent. Folders in the agent’s structure
may have one of the following access rights:

Read–only: This data can be read on each host but cannot be modified without
breaking the agent’s verifiable integrity.

Read/write committed: This data can be read and modified on each host but
hosts have to commit to the new state. The changes can be (in principle) be
checked and linked to that host on the agent’s next hop.

Group read: This data can be read only on a predetermined set of authorised
hosts. Modification of the data breaks the agent’s verifiable integrity.

Group read/write: This data can be read and modified only on a predeter-
mined set of authorised hosts.

Groups may be defined flexibly. The selective encryption scheme that we pre-
sented is highly useful to protect data a mobile agent gathers. Hosts not be-
longing to the access group of a given folder cannot eavesdrop on data in such
folders. We realised a reference implementation of the encryption, decryption,
signing, and verification steps including cut & paste detection and prevention;
these operations are transparent for mobile agents. Hence, agents can remain
completely unaware of the security operations performed on them as these op-
erations are part of the agent server’s security services.

For illustration, we described an application scenario that makes use of the se-
lective encryption scheme for protecting personal information within mobile
agents such that this information is made available only to the intended recipi-
ents.

References

1. CONAN, V., FOSS, M., LENDA, P., LOUVEAUX, S., AND SALAYN, A. Legal issues for
personalised agent mediated electronic commerce: The aimedia case study. In Agent Medi-
ated Electronic Commerce, C. Sierra, Ed. Springer Verlag, Berlin, 2000.

2. CROCKER, D. H. Standard for the format of ARPA Internet text messages. Request for
Comments 822, Internet Engineering Task Force, aug 1982.

3. EC. Directive 95/46/EC of the European Parliament and of the Council of 24 october 1995
on the protection of individuals with regard to the processing of personal data and on the free
movement of such data. published in OJEC, November 1995.

4. FIPS46. Data Encryption Standard. Federal Information Processing Standards Publica-
tion 46, U.S. Department of Commerce/National Bureau of Standards, National Techni-
cal Information Service, Springfield, Virginia, 1977. revised as FIPS 46-1:1988; FIPS 46-
2:1993.

5. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Information Processing –
Modes of Operation for an n–Bit Block Cipher Algorithm. Geneva, Switzerland, 1991.
ISO/IEC 10116.

6. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Information technology –
Open Systems Interconnection – The Directory: Authentication Framework. Geneva,
Switzerland, nov 1993. ISO/IEC 9594-8, equivalent to ITU-T Rec. X.509, 1993.

7. KARNIK, N. M., AND TRIPATHI, A. R. Agent server architecture for the Ajanta mobile-
agent system. In Proceedings of the 1998 International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA ’98) (Las Vegas, July 1998).

8. KARNIK, N. M., AND TRIPATHI, A. R. Security in the Ajanta mobile agent system. Tech-
nical Report TR-5-99, University of Minnesota, Minneapolis, MN 55455, U. S. A., May
1999.

9. MENEZES, A. J., VAN OORSCHOT, P. C., AND VANSTONE, S. A. Handbook of Applied
Cryptography. Discrete Mathematics and its Applications. CRC Press, New York, 1996.
ISBN 0-8493-8523-7.

10. RIORDAN, J., AND SCHNEIER, B. Environmental key generation towards clueless agents.
In Vigna [19], pp. 15–24.

11. RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. M. A method for obtaining digital sig-
natures and publi–key cryptosystems. Communications of the ACM 21 (1978), 120–126.

12. ROTH, V. Mutual protection of co-operating agents. In Secure Internet Programming [20].
13. ROTH, V., AND JALALI, M. Access control and key management for mobile agents. Com-

puters & Graphics, Special Issue on Data Security in Image Communication and Networks
22, 4 (1998), 457–461.

14. RSA LABORATORIES. Cryptographic message syntax standard. Public Key–Cryptography
Standards 7, RSA Laboratories, Redwood City, CA, USA, 1993. Available at URL: ftp:
//ftp.rsa.com/pub/pkcs/.

15. RSA LABORATORIES. Password–based encryption standard. Public Key–Cryptography
Standards 5, RSA Laboratories, Redwood City, CA, USA, 1993. Available at URL: ftp:
//ftp.rsa.com/pub/pkcs/.

16. SANDER, T., AND TSCHUDIN, C. F. Protecting mobile agents against malicious hosts. In
Vigna [19], pp. 44–60.

17. SUN MICROSYSTEMS, INC. JavaTM Archive (JAR) Features. in [18], relative URL: file:
/docs/guide/jar/index.html.

18. SUN MICROSYSTEMS, INC. JDK 1.2 Documentation, 1998. Available at URL: http:
//java.sun.com.

19. VIGNA, G., Ed. Mobile Agents and Security, vol. 1419 of Lecture Notes in Computer Sci-
ence. Springer Verlag, Berlin Heidelberg, 1998.

20. VITEK, J., AND JENSEN, C. Secure Internet Programming: Security Issues for Mobile and
Distributed Objects, vol. 1603 of Lecture Notes in Computer Science. Springer-Verlag Inc.,
New York, NY, USA, 1999.

21. W3C. Platform for Privacy Preferences (P3P) Specification. Available from URL HTTP:
//www.w3.org/TR/1999/WD-P3P-19990826/, August 1999.

22. WHITE, J. E. Mobile agents. In Software Agents, J. Bradshaw, Ed. AAAI/MIT Press, Menlo
Park, CA, 1997, ch. 18, pp. 437–472.

